Effects of Road Texture on Traffic Noise and Annoyance at Urban Driving Speeds

Vincent K. Dravitzki (Vince.Dravitzki@opus.co.nz)
Darren Walton (Darren.Walton@opus.co.nz)
C.W.B. Wood (Bill.Wood@opus.co.nz)

Opus International Consultants, Central Laboratories, PO Box 30 845, Lower Hutt

Abstract

This paper describes evidence that insufficient allowance is being made for road surface effects on traffic noise in New Zealand urban areas where vehicle speeds are typically 50 km/h. Therefore low noise road surfaces could have much greater benefit in reducing community annoyance with noise in urban areas than was previously thought.

A drive-by technique, which captures both the noise level and a spectral distribution of the noise from test vehicles, and from samples of actual vehicles within vehicle streams, was used to measure the noise from a range of road surfaces. It was found that, at 40-50kmph, when compared to dense graded asphalt, the most commonly used road surfaces (the chip surfaces) may be 3 to 6dBA noisier for cars, and 0 to 2dBA noisier for trucks. These effects are much larger than is anticipated by commonly used road noise models.

Populations adjacent to roads being resurfaced were surveyed using both annoyance and behavioural scales. It was found that surface type was significant in influencing traffic noise annoyance of people living next to the roads, and that changes in behaviour could be detected for very small changes in noise, i.e. less than 2dBA.

Introduction

The paper outlines the findings of a study undertaken to identify related issues concerning ressealed road surfaces in urban environments. The study has two aims. First, to determine the extent that the predominantly random textured road surfaces, that are typical in New Zealand, influence the noise level at urban driving speeds (50kph). Second, to determine the extent of the effect that any noise level differences due to resal have on the adjacent community.

The effects of road surfaces on noise at 80-100kmph are well documented internationally and have also been validated in several New Zealand studies. What is less well understood is whether similar effects occur at urban driving speeds of 40-70kmph and whether these affect community annoyance.

While the crossover from engine noise to tyre noise in the 40-70kmph zone is well identified in the international literature, the effects of the road surface were considered to be adequately represented by the equations in the Calculation of Road Traffic Noise (CRTN) model, 1988 [1] which was originally developed in the UK but is also used extensively in New Zealand. These corrections require an adjustment of −3.5 dBA for pervious surfaces at all speeds, and for impervious bituminous and concrete surfaces a correction of −1dBA for speeds below 75kmph. For speeds above 75kmph a correction based on texture depth (usually 2-4dBA) is required.

A local validation [2] of the CRTN equation had proposed a modified equation, again based on texture depth. While this model predicts a noise effect at 50kmph for different textures, the effect is considered to be small. Further, the trend for heavy traffic contradicts the road surface effects embodied in the more robust Nordic model. The main pavement design guide [3] in Australia and New Zealand also advises that there is little effect by the road surface on noise at 50kmph.

The Nordic model does show some significant effects for road surfaces at urban speeds. However, the effect of chipseal appears less, and the effect of open-graded asphalt greater, than is believed to occur on New Zealand roads.

The current project was formulated as a consequence of public complaints occurring after road...
surfaces were changed as part of regular street maintenance. On occasions complaints as strong as taking up petitions to the local authorities can occur after a street is resealed, and usually these complaints arise within the first month after resal. With the previous estimations of noise these complaints are inexplicable as there should be no increase in noise to cause annoyance given the traffic speeds and surface types selected. We reasoned that if complaints were arising, they were the result of greater surface noise than is estimated by current models, or that the public is more sensitive to small changes in noise, perhaps because of tonal differences.

Design of New Zealand Roads

Road surfaces in urban areas comprise:

- Dense graded asphaltic concrete (asphalt), similar to those used in other countries.
- OGPA (open graded porous asphalt) is also used but primarily for higher speed skid resistance. It has relatively low voids compared to international practice (15-20%) and is laid only in relatively thin layers (30mm thick).

“Chips” (spray seals, surface dressing) which consist of a layer of sprayed bitumen into which is embedded a layer of aggregate of specific size. The nominal aggregate sizes are: 19mm (Grade 2), 16mm (Grade 3), 12mm (Grade 4), 10mm (Grade 5) and 7mm (Grade 6). The New Zealand classification is shown in parenthesis. The aggregates are of a roughly uniform size, within about 65-100% of the maximum size for the grade, and shaped so that the longest dimension is about 100% greater than the smallest dimension. As in other countries, two coat seals, where a smaller chip is fitted into the matrix of a larger chip, are used to increase mechanical properties, stabilise developing failure or increase skid resistance. They are also used in the belief that two coat seals are quieter. Common combinations are 19/12mm, 16/10mm, 16/7mm and 12/7mm.

Every 8 to 15 years short streets, or portions of longer streets, are resealed, usually with a change in seal type.

Procedure

The experimental method needed to determine both the physical effect and the subjective response of residents to the changed noise resulting from the placement of a new seal. Noise measurements were made in conjunction with the rescaling maintenance programmes. This enabled noise levels of surfaces near end of life and in new condition to be obtained. Adjacent residents (about 10-20) at each site were surveyed for their response to the traffic noise levels, both before and after the reseal programme.
Noise Measurements

The noise measurement was a version of the drive-by at constant speed technique. Test vehicles - a car, an ATV and 4 x 6 tractor unit of a truck, were driven by at a 5 metre distance from a microphone linked to a high-speed A/D card, and a 1 second sample of noise was analysed both for 1/3 octave band spectra and total noise level. Generally, 5 passes were taken for each vehicle and for each site an average spectrum and noise level were determined.

To relate the test vehicles to the typical fleet in that area, measurements of about 20 passing cars and 10 trucks were taken at 40% of the sites. For each vehicle type, an average spectrum and noise level were produced. At these sites, the differences of fleet vehicles to test vehicles were used to modify the measurements made at the remaining sites.

Texture measurements were made with a non-contact laser profilometer. The mean profile depth (MPD) was calculated according to ISO 13473 (1997). For smooth surfaces MPD was about 0.3 – 0.6mm, for two coat seals 1 – 1.5mm and new large seals 3.0 – 4.5mm.

Annoyance Survey

Participants

138 participants from 12 locations (streets) are presented within these analyses. There were 62 males and 74 females (with 2 missing) ranging in age from '16 to 25' to '86 or more'. Of this sample approximately 82% were unaware that their street was scheduled for reseal at the first interview but 99% were aware that the road had been resealed at the second interview. A letter outlining the interviewer’s intention to call to discuss road surface noise was read by 82% of the sample.

Materials

Noise annoyance is measured in three scales presented within a 44-item survey. The first measure is a 10-point semantic differential scale, anchored with ‘Not at all annoying’ and ‘extremely annoying’. The second measure is introduced following the standards recommended by Fields et al (1998) and asks participants to record how much the road noise annoys, bothers or disturbs. This scale is corroborated with a Likert scale introduced towards the end of the survey that ranges, “Not at all, a little, moderately, very and extremely’.

Two objects are considered: the first being traffic on the road, the second being the noise generated by trucks.

The third measure of annoyance is a 13-item behavioural disturbance index that follows from the research of Job et al., (2001). Job et al. found that scales measuring a reaction to noise are more reliable than scales of annoyance. Job identifies that ‘annoyance’ consists of psychological/attitudinal components as well as sensitivity to noise.

As a consequence the survey presented 20 items concerning attitudes towards noise and two items concerning noise sensitivity. The remaining items concerned requests for demographic details.

Survey Method

All those who lived adjacent to the reseal area were potential participants. All houses were sent...
The New Zealand Acoustical Society website has recently been updated to include such information as the recently elected officers of the Society.

Other ideas which are being investigated are:

- Adding a search engine for archives of *New Zealand Acoustics*,
- Providing a list of members of the Society,
- Publishing reviews of the 16th Biennial Conference.

Please send further suggestions and feedback to Thomas Scelo (t.scelo@auckland.ac.nz) or follow the instructions on the home page of the web site.

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Bituminous Mixes</th>
<th>Chip Seal Over Bitumen Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC (dBA)</td>
<td>Slurry OGPA Cape (dBA)</td>
</tr>
<tr>
<td>Test light vehicle</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>Typical fleet (light)</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>Difference relative to AC light</td>
<td>N/A</td>
<td>+1</td>
</tr>
<tr>
<td>Test truck</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>Difference relative to</td>
<td>N/A</td>
<td>-3</td>
</tr>
</tbody>
</table>

Table 2: Effects of Different Surfaces at 50 km/h for Car and Truck (Tractor Unit)
Results and Discussion

Road Surface Effects on Noise

The results of the effects of the road surface are shown in Tables 1 to 3. Tables 2 and 3 show that there is a significant road surface effect for cars at 50kmph. Relative to asphalt, a difference of +3 to +6 dBA for chipseals is common. The effect for trucks is much less, at 0 to +2 dBA relative to asphaltic concrete. It appears that some bituminous surfaces may be quieter for trucks when compared to asphalt but there is uncertainty as the numbers of these sites is small.

For cars, there is no significant difference between dense asphalt and open graded porous asphalt at 50kmph. This was expected as in New Zealand OGPA is typically used in depths of 30mm, and the percentage voids is usually less than 20%. In addition most of the asphalt is based on 10mm chip while the OGPA is mainly 14mm chip.

A plot of texture depth versus noise is shown in Figure 3. From this it can be seen that a texture depth/noise relationship is not strong. However, it was noted that many of the two coat seals give a much higher noise than expected for their mean profile depth. Their noise effect is very similar to the single coat chip. It is possible that variability of chip and road sealing procedures does not provide the intended texture and that more detailed procedures for roading contractors are needed.

Annoyance Survey

Three main dependent measures are: perceived annoyance for traffic; annoyance specifically for trucks; and a behavioural disturbance index developed from Job (2001). The means for “before resealing” and “after resealing” are recorded in Table 4. This table shows the means (SD in brackets) of the three scales measuring traffic noise annoyance, before and after road surface resealing. The extent of annoyance is in relation to the scale ranging from 0 (“not at all annoying”) to 10 (“extremely annoying”). “Behavioural Disturbances” are reported as the item score for the 13 items with a larger scores indicating greater behavioural disturbance. The behavioural disturbance index makes no adjustment for incomplete forms and records only the total reported behavioural disturbances.

Figure 4 shows the change in annoyance with resealing, while Figure 5 illustrates the change in behavioural disturbance with resealing.
Traffic noise annoyance shows a significant increase at site 7 (Stokes Valley Road), when measured on the scale recommended by Fields et al. The same site shows an increase in behavioural disturbance, as measured by the scale following Job et al. (2001). Similarly, site one showed a significant decrease in annoyance and significant decrease in behavioural disturbance. Thus both the measures of Fields et al and Job et al identified differences in behaviour or annoyance corresponding to both increased and decreased actual physical noise. However, site 8 shows a significant decrease in behavioural disturbance not matched by a detected difference in annoyance. (Continued on page 14)

<table>
<thead>
<tr>
<th>Location</th>
<th>Level Change (dBA)</th>
<th>Traffic Noise Before</th>
<th>Traffic Noise After</th>
<th>Truck Noise Before</th>
<th>Truck Noise After</th>
<th>Behavioural Before</th>
<th>Behavioural After</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Esplanade (n = 14)</td>
<td>-7.0</td>
<td>6.43 (2.8)</td>
<td>4.24 (2.5)*</td>
<td>7.64 (2.6)</td>
<td>5.96 (2.6)*</td>
<td>5.64 (3.2)</td>
<td>3.79 (3.5)*</td>
</tr>
<tr>
<td>2. Marine Parade (n = 12)</td>
<td>-2.4</td>
<td>1.83 (1.8)</td>
<td>1.17 (1.1)</td>
<td>1.00 (0.8)</td>
<td>0.86 (0.7)</td>
<td>0.67 (1.2)</td>
<td>0.08 (0.3)</td>
</tr>
<tr>
<td>3. Cuba St (n = 4)</td>
<td>-0.9</td>
<td>5.75 (1.7)</td>
<td>5.00 (3.9)</td>
<td>7.25 (1.0)</td>
<td>6.00 (4.5)</td>
<td>4.25 (3.4)</td>
<td>4.75 (4.6)</td>
</tr>
<tr>
<td>4. Moxham Ave (n = 13)</td>
<td>-4.2</td>
<td>5.12 (2.7)</td>
<td>4.92 (2.4)</td>
<td>4.50 (2.9)</td>
<td>4.78 (2.3)</td>
<td>4.31 (4.0)</td>
<td>3.77 (4.2)</td>
</tr>
<tr>
<td>5. Epuni St (n = 15)</td>
<td>+1.7</td>
<td>3.87 (2.5)</td>
<td>5.13 (2.9)</td>
<td>5.33 (3.5)</td>
<td>5.77 (3.3)</td>
<td>1.87 (2.5)</td>
<td>2.20 (2.8)</td>
</tr>
<tr>
<td>6. Muritai Rd (n = 16)</td>
<td>-3.3</td>
<td>5.04 (3.2)</td>
<td>5.52 (2.6)</td>
<td>6.13 (3.5)</td>
<td>6.73 (2.4)</td>
<td>3.56 (3.5)</td>
<td>3.44 (2.9)</td>
</tr>
<tr>
<td>7. Naenae Rd (n = 3)</td>
<td>+0.7</td>
<td>5.83 (1.4)</td>
<td>7.00 (1.7)*</td>
<td>6.87 (2.6)</td>
<td>7.00 (3.6)</td>
<td>5.67 (1.5)</td>
<td>6.00 (4.0)</td>
</tr>
<tr>
<td>8. Ruahine St (n = 11)</td>
<td>-6.0</td>
<td>6.96 (1.7)</td>
<td>6.45 (1.8)</td>
<td>7.06 (1.6)</td>
<td>7.09 (2.3)</td>
<td>6.00 (1.9)</td>
<td>3.36 (2.3)**</td>
</tr>
<tr>
<td>9. Abilene Cres (n = 13)</td>
<td>+6.0</td>
<td>1.92 (1.9)</td>
<td>3.62 (2.9)*</td>
<td>3.50 (2.6)</td>
<td>4.38 (3.2)</td>
<td>0.08 (0.3)</td>
<td>0.92 (1.7)</td>
</tr>
<tr>
<td>10. Stokes Valley Rd (n = 18)</td>
<td>+1.0</td>
<td>4.50 (2.8)</td>
<td>5.67 (3.1)*</td>
<td>4.73 (3.2)</td>
<td>5.67 (2.8)</td>
<td>2.72 (3.1)</td>
<td>4.22 (2.9)*</td>
</tr>
<tr>
<td>11. Brees St (n = 7)</td>
<td>+1.4</td>
<td>3.91 (3.3)</td>
<td>3.44 (2.8)</td>
<td>2.42 (3.2)</td>
<td>2.34 (3.6)</td>
<td>2.43 (3.0)</td>
<td>0.86 (2.3)</td>
</tr>
<tr>
<td>12. Scapa Terrace (n = 12)</td>
<td>-3.9</td>
<td>3.00 (2.7)</td>
<td>2.17 (1.2)</td>
<td>4.85 (3.3)</td>
<td>3.30 (2.5)</td>
<td>0.67 (1.1)</td>
<td>0.33 (1.2)</td>
</tr>
</tbody>
</table>

* p. < .05 ** p. < .01

Table 4: Means and Standard Deviations of Three Dependent Measures: Traffic Noise Annoyance, Truck Noise Annoyance and Behavioural Disturbance Due to Traffic Noise

Traffic noise annoyance shows a significant increase at site 7 (Stokes Valley Road), when measured on the scale recommended by Fields et al. The same site shows an increase in behavioural disturbance, as measured by the scale following Job et al. (2001). Similarly, site one showed a significant decrease in annoyance and significant decrease in behavioural disturbance. Thus both the measures of Fields et al and Job et al identified differences in behaviour or annoyance corresponding to both increased and decreased actual physical noise. However, site 8 shows a significant decrease in behavioural disturbance not matched by a detected difference in annoyance. (Continued on page 14)
The Sentry
Controls Noise from Entertainment venues where bands supply their own amplifier equipment. This microphone driven system operates via a contactor controlling the power to the PA system.

- Clear warning light indicators
- Easy installation and calibration
- Internal or External Microphone
- Anti-tamper seals & microphone circuitry
- Facilities for security loops (doors or windows)
- Continuous power to computer disc systems
- Choice of different weighting filters, etc

This Automatic Volume Control Unit is ideally suited to limit the output of in-house PA systems. Unlike other types of limiters the AVC2 does not reduce the dynamic range without the disadvantages of compressor type limiters. The AVC2 has no external controls and has several anti-tamper features. Many DJ's will insist on AVC2.

The Guardian CX4
With ever stricter fire and noise regulations this unit reduces sound levels during emergency situations, minimising panic which can often add to fatalities. Other features include priority override and linking with fire alarms. This unit can also control maximum Noise Levels in connection with entertainment venues as well as industrial and other applications.

Now available in NZ

For comprehensive details and specifications visit Formula-Sound at www.formula-sound.com

APTA Limited
PO Box 691 T +64 3 442 6252
Queenstown F +64 3 442 6255
New Zealand E sound@apta.co.nz

Introductory Offer
Sentry $1960
AVC2 $2031

(for a limited period only, excluding transport & GST)
Further, site 9 shows differences in annoyance not matched by behavioural disturbance. The likely influence explaining these data is traffic volume. A large difference in physical noise in a quiet area may yield a change in annoyance but not develop any behavioural change because the events that were annoying were too infrequent to cause significant behavioural alteration initially.

The reverse is true. These data show evidence for behavioural responses to it. These questions helped to interpret the findings of the annoyance and disturbance scales. “Before” and “after” comparisons are analysed with repeated measures t-tests. These comparisons reveal the ability of people to detect the source of change in their noise environment. The results suggest people are deliberate in their consideration of the role the road surface has in the change to the noise environment.

Residents at site 1 (The Esplanade), which reduced its average noise by 7.0 dBA, increased their agreement that they “don’t mind the traffic noise on their street” (t (12) = 2.309 p. < .05) and were less likely to describe their street as ‘noisy’ (t (13)=3.229 p. < .01). Site 12 (Scapa terrace) also reduced in noise and here residents correctly disagreed that the “noise outside had become worse” (t (12) = 2.887 p.<.05). Residents of site 5 (Epuni St) were more likely to agree that the “noise outside their house had become ‘worse’ recently” (t (11) = 2.70 p. < .05), therefore recognising an increase in noise of 1.7 dBA. At site 8 (Ruahine St) residents gained a large improvement, with the traffic noise being reduced by 6dBA following the reseal. This is recognised in the post reseal disagreement with the statement that the “traffic noise has gotten worse recently” (t (11) = 3.63 p. < .05).

Residents at site 4 (Moxham Ave) benefited from a 4.2dBA reduction in traffic noise, but became more inclined to disagree with the statement that “a better road surface would result in less noise” (t (12)= 2.80 p. < .05). Following the resurfacing these people were more likely to disagree that the “traffic noise was ‘bad’ when they first moved in”, (t(12) = 2.30 p. <.04). Post reseal, these residents tended to agree more strongly that they “enjoyed peace and quiet” (t (12)= 2.92 p. <.05).

Other Post-Reseal Observations
Participants of the study completed a 20-item questionnaire concerning potential sources of noise and their adaptation that occurs in the absence of significant alteration in levels of annoyance. Put another way, people alter their behaviour to accommodate to changes in noise levels at levels below those that would be detected using noise annoyance scales.

Figure 5. Means for the Behavioural Disturbance Index (N=138) for 12 Reseal Locations
were also more likely to disagree that "other people put up with roads that are much more noisy" (t (11) = 2.61 p. < .05).

Conclusions

There are significant road surface effects regarding traffic noise at speeds of 40-50kph. Relative to asphaltic concrete, for light vehicles these are +3 to +6dBA, and for heavy vehicles 0 to +2 dBA. The road surface effect is substantially the same at 40-50 kph as it is at 80-100kph. Two - coat seals (as made in New Zealand) are no less noisy than single coat seals.

The behavioural disturbances index, following Job (2001), is a more sensitive measure of noise annoyance than those recommended by Field et al (1998). Whereas a decrease in noise did not correspond with a reduced level of annoyance using the Fields et al recommend scale, the behavioural disturbance index detected significant improvements for those affected.

The participants correctly identified the source of noise annoyance as being the road surface, and not cars, truck or other characteristics, such as service covers.

Very small increases in noise level are matched with changes in behavioural disturbance. This is true even if the change is less than +3dBA (c.f. Raw & Griffiths 1988) [6]. The reverse is true also: behavioural disturbance reduction can be anticipated even when the reduction in noise is very small.

References

