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Focused Sound Sources and the 
Acoustical Society of New Zealand Logo

Introduction
The logo of the Acoustical Society of New Zealand is a set of grey 
concentric rings, with the rings in one half-space positioned at 
radii between the radii of the rings in the other half-space. The 
logo can be seen on the cover of the journal (with an additional 
emphasis to show which quarter it has appeared in) and on 
the website of the society (www.acoustics.org.nz). In keeping 
with aim of the society to “promote the science and practice of 
acoustics” (www.acoustics.org.nz/files/ASNZ_Rules.pdf), it is 
incumbent upon us to ask whether the Society’s logo represents 
a physical sound field. This article demonstrates that this is the 
case, and that our logo has a sound scientific basis. A sound 
field that looks very similar to the logo is produced by a focused 
source, in which circular wavefronts converge to a point and 
then radiate outwards from that point. This article gives a 
description of how focused sources are produced and provides 
methods for generating them.

Focusing of sound is a well-known high-frequency phenomenon 
in which sound rays converge to a point in space and then 
diverge from that point. Focusing can occur, for example, 
when a plane wave is reflected from a curved surface [1][2]. At 
low frequencies where the wavelength of the plane wave is of 
similar size to, or larger than, the reflecting object sound tends 
to dif-fract around the reflector and focusing does not occur. 
At high frequencies where the wavelength is small compared 
to the reflecting object, geometric acoustics applies and the 
behaviour is equivalent to the optical case. In this case, a plane 
wave parallel to the principal axis of a spherically curved surface 
will reflect sound to the focal point of the surface. The reflected 
sound converges on the focal point and then diverges out-wards 
from the focal point with spherical wave fronts.

Focusing can also be produced by a planar surface if the surface 
is vibrating in a particular manner. This fact is the basis for the 
generation of focused sources in sound reproduction systems. For 
example, Wave field Synthesis (WFS) is a method of producing 
sound fields derived from the Kirchhoff Helmholtz integral, for 
an arbitrarily shaped volume of space, or in the simpler case of a 
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planar surface, the Rayleigh integrals [3]–[6]. A large 2D planar 
array of loudspeakers allows a practical implementation of the 
first Rayleigh integral and can generate a sound field in front 
of the array produced by an arbitrary distribution of sources 
behind the array. Since the array is planar, it also generates the 
same sound field behind the array. If the sound produced by 
the array elements are reversed in time, the array produces a 
sound field that propagates back from the array to the original 
sound sources. This techniques, known as time reversal signal 
processing, is used in many areas in optics, ultrasonic imaging 
[7] and acoustics [8][9]. Focused sources may also be generated 
in WFS to produce the impression of sound originating in front 
of the array [10]–[12].

In this paper, we will present the theory of sound field 
reproduction based on the use of integral formulas. We will 
then consider the special case of time reversal processing and 
show how it produces focused sources. We will consider a single 
sound source for simplicity. We will then consider methods for 
directly generating focused sound sources. For simplicity we will 
primarily consider the 2D case, but will include a derivation 
of a focused source in the 3D case. We also make the standard 
assumption that sound sources have a complex time dependence 
of the form exp(iwt) where f is the frequency of oscillation and  
w =2pf is the radian frequency. Solutions to the wave equation 
are then complex functions of space which we denote q(x,y,z). 
The physical sound pressure p(x,y,z,t) is then the real part of the 
complex time-varying sound pressure, i.e. Eqn(1):
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where q
R
(x,y,z) is the real or in-phase part of the complex 

pressure and q
I
(x,y,z) is the imaginary or quadrature part. e see 

that the physical field contains both in-phase and quadrature 
components.
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INTEGRAL FORMULAS FOR 
CALCULATION OF SOUND PRESSURE 
The reproduction of sound fields is based on integral formulas 
that allow the calculation of the sound pressure at a point in 
space given knowledge of the pressure or velocity (or both) on 
a defined surface. The Kirchhoff–Helmholtz (K–H) integral 
describes the sound pressure inside a region of space, in which 
there are no sound sources, as an integral over the surface, S, 
of the pressure, and the normal component of the pressure 
gradient, produced on the surface by sound sources outside the 
region [13] (Fig. 1).

Mathematically the integral is expressed, for vectors r and r’
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is the free space Greens function (the idealised sound pressure 
produced by a point source) for a sound source radiating sound 
at positive radian frequency w and with wave number k = wc 
where c is the speed of sound.

A remarkable feature of this integral equation is that the sound 
pressure outside the region is zero. This is possible because the 
sound pressure inside the region is produced by a combination 
of monopoles (the Greens function) and normally oriented 
dipoles (the normal gradient of the Greens function) which 
allows sound to be directed into the region and sound radiating 
out of the region to be cancelled [14]. 

For the case of an acoustic half-space divided by a plane the 
K–H integral simplifies and the sound field on one side of the 
plane may be described in terms of the pressure or the pressure 
velocity produced on the surface by sound sources in the other 
half-space. In effect, there is no need to cancel sound radiating 
out of the region because it is of infinite extent. 

The two cor-responding integral formulas are known as 
Rayleigh’s first and second integral formulas [13]. We consider 
the first integral formula here for z > z

0
. 

This equation states that the sound field for z > z
0
 is the integral 

over the (x’,y’) plane positioned at z = z
0
 of the sound pressure 

produced by a distribution of monopoles with amplitudes given 
by the normal component of the complex sound velocity in the 
(x’,y’) plane produced by sound sources in the half space z < z

0
.
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In other words, if we know the sound field on a plane and there 
are no sound sources in front of it, we can calculate the field at 
all points in front of the plane, because the sound propagates 
according to the wave equation.

To simplify our description, we will now consider the 2D case 
where the sound field is constant in y. This would occur if 
the sound field was a combination of plane waves which were 
constant in y, or for a combination of line sources aligned 
parallel to the y axis. The Rayleigh integral can be simplified 
because the velocity is no longer a function of y and the integral 
of the 3D Greens function over y is known. For a point source 
at (x’,y’,z’) the integral of the Greens function over y’ is:
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where H
0

(2)(kR) is the cylindrical Bessel function of the second 
kind and R = sqrt[(x-x’)2+(z-z’)2] is the polar radius in the (x,z) 
plane. 

The Rayleigh integral becomes [13]:
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for z > z
0
. This equation states that the 2D complex pressure 

can be reproduced for z > z
0
 by a continuous distribution of line 

sources at z = z
0
, each with complex amplitude . 

For example, a line source at  produces the complex pressure
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Figure 1: Kirchhoff Helmholtz integral.

Figure 2: Rayleigh integral.
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The z-component of the velocity at z = 0 is
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A Matlab simulation was written to demonstrate reproduction 
of a line source field, using a finite array of 250 sources over -20 
to 20 metres (sources are 160 mm apart). The amplitudes of the 
25 sources at each end of the array were tapered to zero using a 
raised cosine window to reduce end-effects [3], [6], [15]. 

The sound pressure produced by the line source is shown in 
Fig. 3 and the real and imaginary parts of the sound pressure 
reproduced by the line source array, calculated over –2 to 2 m, 
in x and z, are shown in Figs. 4 and 5. The line sources are 
shown as circles at z = 0. The WFS array reproduces the sound 
field correctly for z > 0, and produces the same sound field for 
z < 0, since the line sources radiate equally in both directions.

The reproduction error, defined as
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is shown in Fig. 6. The error is below –40 dB in the reproduction 
half-space, except for positions close to the line sources. For z < 
0 the error is large since the WFS array generates a symmetric 
field, and is not able to generate a sound field that propagates 
towards it from the line source.

TIME REVERSAL – FOCUSED 
SOURCES
Time reversal is a technique that allows imaging of sound sources 
in homogenous media [7][8]. The sound pressure produced by 
one or more sources in the medium is detected at a number of 
points on a surface by an array of sensors. If the recorded signals 
are played back into the sensors (which can operate in reverse), 
the sound field will consist of wave fronts converging from the 
sensor array to the original sound source locations [8]. 

Time reversal can be implemented using the Rayleigh integral 
approach discussed in the previous section. The time-dependent 
complex pressure has the form, for z > z

0
 (Eq (6))
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If the time index is reversed, t —> -t then exp(iw(-t)) = exp(-iwt) 
and the integral becomes
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Figure 3: Line source sound field.

Figure 4: Real part of complex WFS field.

Figure 5: Imaginary part of complex WFS field.

where the Hankel function of the first kind (the conjugate of 
H

0
(2)(kR)) is required to produce wave propagation outward from 

each line source. The sound field produced by approximating 
this integral using the same discrete array as in Fig. 3 to Fig. 6 is 
shown in Fig. 7 and Fig. 8. The line array now produces circular 
wave fronts that converge on the source position as indicated 
by the arrows in Fig. 7. The same real sound pressure can be 
produced by conjugating the velocity, which is a well-known 
result in WFS theory.
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The quadrature (imaginary) part of the field demonstrates 
circular wavefronts around each focus point with maxima on 
one side which align with the minima of the wavefronts on the 
other side, creating a discontinuity along a line between the two 
where the amplitude is zero. Since the observed sound field is 
given by Eq. (1), the quadrature field will be maximum at times  
t
n
 = (n+1/2)/2f for integers n.

THEORETICAL DESCRIPTION OF A 
FOCUSED SOURCE 
The sound reproduction example in the previous section 
generates two sets of focused sources, on each side of the array. 
One could ask the question, is it possible to generate a single 
focused source at the origin and is there a physical description 
of such a sound field? 

Methods for generating such a field have been given in [10]–
[12], [16]. A focused source may be described in two dimensions 
as a sum of plane waves arriving from angles from 0 to 180 
degrees. Mathematically the focused source has the form
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where F is the azimuthal angle measured from the x-axis. This 
integral can be evaluated by expressing the plane wave in its 
cylindrical form using a Bessel expansion [13]
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For calculating the field over a finite radius R at wave number k, 
this expansion may be truncated to m e [-M,M] for M=[kR] [17]. 
The integral can be carried out and the resulting expansion put 
in the form
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where the “sinc” function has the value of 1 for m = 0. The 
sound pressure at R = 0 is one since only the m = 0 term is 
nonzero for R = 0 and J

0
(0) = 1. This sound field can be rotated 

by any angle F by using (F-F0) in the expansion.

The imaginary part of the sound field generated by this 
expansion is shown in Fig. 9, for a frequency of 1 kHz and F 
=-90 degrees. The sound field is similar to the focused source 
generated in each half space in Fig. 8. However, one can see 
interference effects which are caused by the plane waves 
arriving from 0 and 180 degrees, which create a standing wave 
component. 

This effect can be reduced by limiting the range of integration 
from a to p – a for a small angle a. The sound field expansion 
becomes
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The wave field produced by this expansion for an angle a = 5 
degrees is shown in Fig. 10. The standing wave interference is 
reduced from that appearing in Fig. 9 but is still noticeable.

A more general approach to generating a focused source is 
to allow the amplitudes of the plane waves to be weighted 
arbitrarily, instead of the equal weighting that occurs in Eq.s 
14 and 15. 

Figure 6: Error in dB.

Figure 7: Real part of time-reversed sound field.

Figure 8: Imaginary part of time-reversed field.

Continued on Page 18...
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




 
 
 
 
 
 
 











 



 


 
 


















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We consider a focused source field given by,
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where w(F
i
) is a general window which will restrict the angles of 

arrival to between 0 and 180, of the form
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where the order of the window is limited to M, since this is the 
maximum order of the sound field expansion. Note that the 
order of the window may be less than M if desired by allowing 
some elements to be zero. Substituting this expansion and Eq. 
(13) into (16) yields
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A simple way to determine the coefficients b
m
 is to assume a 

rectangular window as above, determine the corresponding 
coefficients, and then apply a further windowing function 
to the coefficients to smooth the window. For a rectangular 

window of range a to p – a the coefficients are
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The effect of truncating the window order is to produce ringing 
in the window amplitude. A second window may be applied to 
the coefficients to reduce the effect. For example, the window 
produced for a = 10 degrees and M = 53 is shown in Fig. 11a, 
and the window produced by applying a Kaiser window to the 
coefficients is shown in 11b. The smoothed window rolls of the 
amplitude of the plane wave near 0 and 180 degrees and reduces 
ringing.

The sound field produced using 11b is shown in Fig. 12. The 
sound field shows less interference effects than those in Figs 9 
and 10.

THE 3D CASE
The examples given above have all been for the 2D case where 
the sound pressure is a function of 2 coordinates only. The 
sources used in the WFS examples are line sources and the 
focused sources produced are line focused sources. Since we live 
in a 3D world, we will include a brief derivation of a focused 
source for the 3D case. 

Following the previous section, we will generate a focused 
source from a distribution of plane waves arriving from angles 
(Q

i
, F

i
) in spherical coordinates (Fig 13), (r, Q, F)
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where the plane waves are restricted to the upper hemisphere Q
i
 

e [0, p/2 - a]and where, as before, a > 0 avoids plane waves 
arriving from Q

i
 = p/2 as these will produce standing waves. In 

the 3D case the standing wave is caused by plane waves arrive 

Figure 9: Quadrature focused source field using 
plane waves from 0 to 180 degrees.

Figure 10: Quadrature focused source field using 
plane waves from 5 to 175 degrees.

Figure 11: (a): Window for a = 10 degrees and 
(b) modified by a Kaiser window with Kaiser 
parameter 20.

...Continued from Page 15.
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from all angles F
i
 e [0, 2p]. 

Using the expansion in Eq. (13), it has the form
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which is a radial standing wave field.

Figure 13: Spherical coordinates.

The integral in Eq. (20) can be carried out using the spherical 
harmonic expansion of the plane wave [13]

( )[ ]

( ) ( ) ( )

sin sin cos cos cos

*

0

4 , ,

i i iikr

n
n m m

n n n i i
n m n

e

i j kr Y Y

θ θ φ φ θ φ

π θ φ θ φ

− +

∞

= =−

= ∑∑
	 (22)

where jn(.) is the spherical Bessel function and
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is the (n,m)th spherical harmonic, where P
n
m(.) is the associated 

Legendre function. 

Substituting Eq. (22) into (20) yields
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The integral over F
i
 eliminates all terms except the m = 0 term 

and produces a field which is rotationally symmetric
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For the n = 0 case P
0
(cosQ

i
) = 1 and the integral may be carried 

out directly yielding
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For n > 0 the integral may be carried out by substituting u = cos 
Q

i
 and using the recurrence formula [13]
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yielding
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the final result is Eqn (29):
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The field generated by this equation for a frequency of 1 kHz 
and a = 5 degrees is shown in Fig. 14. The field looks similar 
to that of the 2D case in Fig. (12). However, in the 3D case the 
sound pressure will reduce with 1/r as opposed to 1/sqrt(R) in 
the 2D case.

As in the 2D case, the sound field shows some artefacts due 
to the interference of waves arriving over all azimuthal angles, 
in a similar manner to the 2D case. These artefacts could be 
reduced by applying a window w(Q

i
) to the plane wave integral 

in Eq. (20).

Figure 12: Quadrature focused source field 
using plane waves from 10 to 170 degrees with 
window smoothed by Kaiser window with Kaiser 
parameter 20
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Since the Legendre functions are orthogonal, 
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this window can be written
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and the coefficients b
n
 may be obtained as
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For a rectangular window
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the coefficients can be calculated using the results above. 

For a normalized sound pressure of one at the origin, the 
coefficients become
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for n > 0 and and b
0
 = 1.

These coefficients can be weighted by a further window to 
reduce the effects of truncation and produce a tapering off 
of the plane wave amplitudes near Q

i
 = p / 2 - a. Since the 

expansion in Eq. (31) is for positive integers n, the window must 
be one-sided to leave the low order terms unaltered. We will use 
a Gaussian window of the form

( ) ( ) [ ]
2

/ , 0,n MG n e n Mγ−= ∈
	 (35)

with a window parameter g that controls the rolloff. The 
window generated for a = 10 degrees and M = 53 is shown in 
Fig. 15a and the window produced by the Gaussian smoothing 
for g = 10 is shown in Fig. 15b.

The resulting sound field is shown in Fig. 16. The wavefronts 
show less artefacts than Fig. 14.

CONCLUSION
This article has discussed the occurrence of focused sources 
which can arise naturally in reflections from curved surfaces at 
high frequencies and in sound re-production with time reversal. 
It has also been shown that focused source fields can be directly 
generated using a simple model based on plane waves arriving 
over a half space. Bessel expansions have been derived for both 
the 2D and 3D case and a windowing method presented for 
reducing artifacts in the repro-duced field. The imaginary part of 
the complex sound field shows wavefronts in the two half-spaces 
with a discontinuity along a line separating the half-spaces. The 
sound field is similar to the logo of the Acoustical Society of 
New Zealand, demonstrating that the logo has a physical basis.

Figure 14: Quadrature focused source field in 3D 
using plane waves arriving from 0 to 85 degrees in 
elevation and 0 to 360 in azimuth.

Figure 15a: Rectangular window for a = 10 
degrees and M = 53. 15b: Window with additional 
Gaussian smoothing with g = 10.

Figure 16: Quadrature focused source field in 3D 
using plane waves arriving from 0 to 80 degrees 
with Gaussian smoothing, g = 10.
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