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Abstract

This paper demonstrates that the logo of the New Zealand Acoustical Society has a sound physical basis. The logo shows concentric

circles with a discontinuity between the right and left hemispheres. If the logo were a sound field, these discontinuities would

represent amplitude inversions. This behaviour occurs in sound fields containing focused sources, where circular wavefronts

converge on a focal point from one hemisphere and then diverge into the other hemisphere. At certain times during the propagation

of the wavefronts, the quadrature part of the sound field is maximum, and this demonstrates concentric wavefronts with a phase

discontinuity between the two hemispheres and a null along the line separating the two.

Introduction

The logo of the Acoustical Society of New Zealand is a set of grey
concentric rings, with the rings in one half-space positioned at
radii between the radii of the rings in the other half-space. The
logo can be seen on the cover of the journal (with an additional
emphasis to show which quarter it has appeared in) and on
the website of the society (www.acoustics.org.nz). In keeping
with aim of the society to “promote the science and practice of
acoustics” (www.acoustics.org.nz/files/ASNZ_Rules.pdf), it is
incumbent upon us to ask whether the Society’s logo represents
a physical sound field. This article demonstrates that this is the
case, and that our logo has a sound scientific basis. A sound
field that looks very similar to the logo is produced by a focused
source, in which circular wavefronts converge to a point and
then radiate outwards from that point. This article gives a
description of how focused sources are produced and provides
methods for generating them.

Focusing of sound is a well-known high-frequency phenomenon
in which sound rays converge to a point in space and then
diverge from that point. Focusing can occur, for example,
when a plane wave is reflected from a curved surface [1][2]. At
low frequencies where the wavelength of the plane wave is of
similar size to, or larger than, the reflecting object sound tends
to diffract around the reflector and focusing does not occur.
At high frequencies where the wavelength is small compared
to the reflecting object, geometric acoustics applies and the
behaviour is equivalent to the optical case. In this case, a plane
wave parallel to the principal axis of a spherically curved surface
will reflect sound to the focal point of the surface. The reflected
sound converges on the focal point and then diverges out-wards
from the focal point with spherical wave fronts.

Focusing can also be produced by a planar surface if the surface
is vibrating in a particular manner. This fact is the basis for the
generation of focused sources in sound reproduction systems. For
example, Wave field Synthesis (WFS) is a method of producing
sound fields derived from the Kirchhoff Helmholtz integral, for
an arbitrarily shaped volume of space, or in the simpler case of a
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planar surface, the Rayleigh integrals [3]-[6]. A large 2D planar
array of loudspeakers allows a practical implementation of the
first Rayleigh integral and can generate a sound field in front
of the array produced by an arbitrary distribution of sources
behind the array. Since the array is planar, it also generates the
same sound field behind the array. If the sound produced by
the array elements are reversed in time, the array produces a
sound field that propagates back from the array to the original
sound sources. This techniques, known as time reversal signal
processing, is used in many areas in optics, ultrasonic imaging
[7] and acoustics [8][9]. Focused sources may also be generated
in WEFS to produce the impression of sound originating in front

of the array [10]-[12].

In this paper, we will present the theory of sound field
reproduction based on the use of integral formulas. We will
then consider the special case of time reversal processing and
show how it produces focused sources. We will consider a single
sound source for simplicity. We will then consider methods for
directly generating focused sound sources. For simplicity we will
primarily consider the 2D case, but will include a derivation
of a focused source in the 3D case. We also make the standard
assumption that sound sources have a complex time dependence
of the form exp(icot) where f is the frequency of oscillation and
 =277f is the radian frequency. Solutions to the wave equation
are then complex functions of space which we denote q(x,y,2).
The physical sound pressure p(x,y,zt) is then the real part of the
complex time-varying sound pressure, i.e. Eqn(1):

P(x, y,z,t) = Re{q(x, y,z)e'"'}
=4, (x,y,z)cos(a)t)
-q, (x,y,z)sin(a)t) W

where q,(x,3,2) is the real or in-phase part of the complex
pressure and ¢,(x,y,2) is the imaginary or quadrature part. e see
that the physical field contains both in-phase and quadrature
components.



INTEGRAL FORMULAS FOR
CALCULATION OF SOUND PRESSURE

The reproduction of sound fields is based on integral formulas
that allow the calculation of the sound pressure at a point in
space given knowledge of the pressure or velocity (or both) on
a defined surface. The Kirchhoff-Helmholtz (K-H) integral
describes the sound pressure inside a region of space, in which
there are no sound sources, as an integral over the surface, S,
of the pressure, and the normal component of the pressure
gradient, produced on the surface by sound sources outside the
region [13] (Fig. 1).

Figure 1: Kirchhoff Helmholtz integral.

Mathematically the integral is expressed, for vectors r and r’

=011 L1 o5

where q(r) is the complex sound pressure inside the region with
surface S and,

7ik‘r—r"
G(r | r’) = | r|
4zr—r
3)
is the free space Greens function (the idealised sound pressure
produced by a point source) for a sound source radiating sound
at positive radian frequency ¢ and with wave number k = coc
where c is the speed of sound.

A remarkable feature of this integral equation is that the sound
pressure outside the region is zero. This is possible because the
sound pressure inside the region is produced by a combination
of monopoles (the Greens function) and normally oriented
dipoles (the normal gradient of the Greens function) which
allows sound to be directed into the region and sound radiating
out of the region to be cancelled [14].

For the case of an acoustic halfspace divided by a plane the
K-H integral simplifies and the sound field on one side of the
plane may be described in terms of the pressure or the pressure
velocity produced on the surface by sound sources in the other
halfspace. In effect, there is no need to cancel sound radiating
out of the region because it is of infinite extent.

The two corresponding integral formulas are known as
Rayleigh’s first and second integral formulas [13]. We consider
the first integral formula here for z > 2.
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This equation states that the sound field for z > z is the integral
over the (x',y)) plane positioned at z = z of the sound pressure
produced by a distribution of monopoles with amplitudes given
by the normal component of the complex sound velocity in the
(x’,y’) plane produced by sound sources in the half space z < z,.

—ik‘r—r"

—ipck 77 ., e
q(x.y.2) = - ”Vz(xayﬁzo)?r,'

dx'dy’

—0 —0 |

4)

In other words, if we know the sound field on a plane and there
are no sound sources in front of it, we can calculate the field at
all points in front of the plane, because the sound propagates
according to the wave equation.

Figure 2: Rayleigh integral.

To simplify our description, we will now consider the 2D case
where the sound field is constant in y. This would occur if
the sound field was a combination of plane waves which were
constant in y, or for a combination of line sources aligned
parallel to the y axis. The Rayleigh integral can be simplified
because the velocity is no longer a function of y and the integral
of the 3D Greens function over y is known. For a point source

PN

at (x',y’,2) the integral of the Greens function over y’ is:

0 —xk‘r—r"

J

—0

,
4 | !| 'y =ZH(EZ)(kR)
zlr—r
5)
where H ?(kR) is the cylindrical Bessel function of the second
kind and R = sqrt[(xx)*+(zz’)] is the polar radius in the (x,2)
plane.

The Rayleigh integral becomes [13]:

pck
X,z)=——x
q(x.2) 3

Jr. (2 ) (k=) (-2,
- ©

for z > z,. This equation states that the 2D complex pressure
can be reproduced for z > z by a continuous distribution of line
sources at z = z,, each with complex amplitude .

For example, a line source at produces the complex pressure

g (xz)=H (k«/xz i(z=z) )

D

13



The z-component of the velocity at z = 0 is

i dq (x,z
o (n) = deled))
yol0) dz

- LH;(Z) (k«/xz + zs2 )—_Z”
pc \Jx +zs2 ®)

A Matlab simulation was written to demonstrate reproduction
of a line source field, using a finite array of 250 sources over -20
to 20 metres (sources are 160 mm apart). The amplitudes of the
25 sources at each end of the array were tapered to zero using a
raised cosine window to reduce end-effects [3], [6], [15].

The sound pressure produced by the line source is shown in
Fig. 3 and the real and imaginary parts of the sound pressure
reproduced by the line source array, calculated over -2 to 2 m,
in x and z, are shown in Figs. 4 and 5. The line sources are
shown as circles at ¢ = 0. The WES array reproduces the sound
field correctly for z > 0, and produces the same sound field for
2 <0, since the line sources radiate equally in both directions.

The reproduction error, defined as

oy a2 0 (52)
- g, (0.0) ©)

is shown in Fig. 6. The error is below -40 dB in the reproduction
half-space, except for positions close to the line sources. For z <
0 the error is large since the WFS array generates a symmetric
field, and is not able to generate a sound field that propagates
towards it from the line source.

TIME REVERSAL - FOCUSED
SOURCES

Time reversal is a technique that allows imaging of sound sources
in homogenous media [7][8]. The sound pressure produced by
one or more sources in the medium is detected at a number of

points on a surface by an array of sensors. If the recorded signals
are played back into the sensors (which can operate in reverse),
the sound field will consist of wave fronts converging from the
sensor array to the original sound source locations [8].

Time reversal can be implemented using the Rayleigh integral
approach discussed in the previous section. The time-dependent
complex pressure has the form, for z >z, (Eq (6))

q(x,z,t) = p;k X

.[vz (x,z,)e" HY (k\/(x—x')2 +(z-2,) )dx'

(10)

If the time index is reversed, t —> -t then exp(ico(t)) = exp(-icot)
and the integral becomes

qTR (x’z’t):pTCkX

Ivl (x', zo)eﬂ'mH;l) (k\/(x—x')2 +(z -z, )2 )dx'

s (11)
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Figure 5: Imaginary part of complex WEFS field.

where the Hankel function of the first kind (the conjugate of
H_ “(kR)) is required to produce wave propagation outward from
each line source. The sound field produced by approximating
this integral using the same discrete array as in Fig. 3 to Fig. 6 is
shown in Fig. 7 and Fig. 8. The line array now produces circular
wave fronts that converge on the source position as indicated
by the arrows in Fig. 7. The same real sound pressure can be
produced by conjugating the velocity, which is a well-known
result in WES theory.
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Figure 7: Real part of time-reversed sound field.

z(m)

Figure 8: Imaginary part of time-reversed field.

The quadrature (imaginary) part of the field demonstrates
circular wavefronts around each focus point with maxima on
one side which align with the minima of the wavefronts on the
other side, creating a discontinuity along a line between the two
where the amplitude is zero. Since the observed sound field is
given by Eq. (1), the quadrature field will be maximum at times
t = (n+1/2)/2f for integers n.

THEORETICAL DESCRIPTION OF A
FOCUSED SOURCE

The sound reproduction example in the previous section
generates two sets of focused sources, on each side of the array.
One could ask the question, is it possible to generate a single
focused source at the origin and is there a physical description
of such a sound field?

Methods for generating such a field have been given in [10]-
[12], [16]. A focused source may be described in two dimensions
as a sum of plane waves arriving from angles from 0 to 180
degrees. Mathematically the focused source has the form

1% .
z[loccosq}ﬁlg)smzzﬁ']
g,(x.y)=—|e dg,

o (12)
where ¢ is the azimuthal angle measured from the x-axis. This
integral can be evaluated by expressing the plane wave in its

cylindrical form using a Bessel expansion [13]

eik(xcosqﬁjysinq)v) — eichos(tﬁ—qﬁ})

= i i"J (kR)e""*
(13)

For calculating the field over a finite radius R at wave number k,
this expansion may be truncated to m & [[M,M] for M=[kR] [17].
The integral can be carried out and the resulting expansion put
in the form

M . sin 2
0 (&)= 3 g, (k) 2Lnr2)
e m/2 (14)
where the “sinc” function has the value of 1 for m = 0. The
sound pressure at R = 0 is one since only the m = 0 term is
nonzero for R = 0 and J(0) = 1. This sound field can be rotated
by any angle ® by using (P — @) in the expansion.

The imaginary part of the sound field generated by this
expansion is shown in Fig. 9, for a frequency of 1 kHz and ®
=90 degrees. The sound field is similar to the focused source
generated in each half space in Fig. 8. However, one can see
interference effects which are caused by the plane waves
arriving from O and 180 degrees, which create a standing wave
component.

This effect can be reduced by limiting the range of integration
from & to 77 — & for a small angle t. The sound field expansion
becomes

’ sin(m(;r/Z—a))
m(;r/Z—a) (15)

The wave field produced by this expansion for an angle & =5

9, (R9)= 2 J, (kR)e"

degrees is shown in Fig. 10. The standing wave interference is
reduced from that appearing in Fig. 9 but is still noticeable.

A more general approach to generating a focused source is
to allow the amplitudes of the plane waves to be weighted
arbitrarily, instead of the equal weighting that occurs in Eq.s

14 and 15.
Continued on Page 18...
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...Continued from Page 15.

y (m)

Figure 9: Quadrature focused source field using
plane waves from 0 to 180 degrees.

y (m)

Figure 10: Quadrature focused source field using
plane waves from 5 to 175 degrees.

We consider a focused source field given by,

1 T ikR cos( ¢~
a,. (5) == [ () dg
0 (16)

where w(® ) is a general window which will restrict the angles of
arrival to between 0 and 180, of the form

w(g)= 2. B.e"
e (17)

where the order of the window is limited to M, since this is the
maximum order of the sound field expansion. Note that the
order of the window may be less than M if desired by allowing
some elements to be zero. Substituting this expansion and Eq.

(13) into (16) yields

M

q,,(Rg)= D i"BJ, (kR)e"

m=—M

(18)

A simple way to determine the coefficients (5 is to assume a
rectangular window as above, determine the corresponding
coefficients, and then apply a further windowing function
to the coefficients to smooth the window. For a rectangular
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window of range & to 7T - & the coefficients are

_imsin[m(ﬂ/Z—a)] o
= (-1) m(7r/2—a) ’ ’

1, m=0

B,
(19)

The effect of truncating the window order is to produce ringing
in the window amplitude. A second window may be applied to
the coefficients to reduce the effect. For example, the window
produced for & = 10 degrees and M = 53 is shown in Fig. 11a,
and the window produced by applying a Kaiser window to the
coefficients is shown in 11b. The smoothed window rolls of the
amplitude of the plane wave near O and 180 degrees and reduces
ringing.

The sound field produced using 11b is shown in Fig. 12. The
sound field shows less interference effects than those in Figs 9

and 10.
THE 3D CASE

The examples given above have all been for the 2D case where
the sound pressure is a function of 2 coordinates only. The
sources used in the WFS examples are line sources and the
focused sources produced are line focused sources. Since we live
in a 3D world, we will include a brief derivation of a focused
source for the 3D case.

Following the previous section, we will generate a focused
source from a distribution of plane waves arriving from angles

(0, @) in spherical coordinates (Fig 13), (r, ©, )

Qy0ap (X,3:2) =

1 nl/2-a2x
J‘eikr[sinesina, cos( g4 )+cosOcos ¢, | sin 9,d9,d¢,
2 %

(20)

where the plane waves are restricted to the upper hemisphere ©,
e [0, 71/2 - aJand where, as before, &« > 0 avoids plane waves
arriving from ©, = 71/2 as these will produce standing waves. In
the 3D case the standing wave is caused by plane waves arrive

Amplitude

Il Il Il Il Il Il Il
30 60 90 120 150 180 210 240 270 300 330 360
phi (Degrees)

Amplitude

; ; L ; ; ;
30 60 20 120 150 180 210 240 270 300 330 360
phi (Degrees)

Figure 11: (a): Window for & = 10 degrees and
(b) modified by a Kaiser window with Kaiser
parameter 20.



is the (n,m)th spherical harmonic, where P "(.) is the associated
Legendre function.

Substituting Eq. (22) into (20) yields

Q0 (r:60.0) = 22 Z i"j (kr)Y" (0,4)x

n=0 m=-n

7l2-a2r

| [1(0.4) singagag

y(m)

24

The integral over ¢ eliminates all terms except the m = 0 term
and produces a field which is rotationally symmetric

Figure 12: Quadrature focused source field G020 (1,0)=21"j, (kr)(2n+1) P, (cos ) x

n=0
using plane waves from 10 to 170 degrees with s
window smoothed by Kaiser window with Kaiser j P (cos® )sin0dé,
parameter 20 0 25)
from all angles ¢ & [0, 277]. For the n = 0 case P (cos®) = 1 and the integral may be carried

l out directly yielding
Using the expansion in Eq. (13), it has the form
7/2-a
2z .
wreos(9-4) 7 .[ sin8.do, =l—cos(7r/2—a)

[e dg =J, (kR) 0 06

o (21)
For n> 0 the integral may be carried out by substituting u = cos

which is a radial standing wave field. @i and using the recurrence formula [13]

z
dP dP
; (2n+1) P (u) = =2 (“)_ ()
0 du du (27)
yielding
L7y
( 1
[ P (uw)du=——[P_ (cosy)-P, (cosy)]
¢ cosy 2n+1 (28)
X the final result is Eqn (29):
. T
q; 00 (r’ 6) =Jo (k'i") [1 —Ccos (; - 0!):|
Figure 13: Spherical coordinates. +ii"j () (2n+1) P (cos 0)x
The integral in Eq. (20) can be carried out using the spherical p T _p 7
harmonic expansion of the plane wave [13] w1 | COS 2 @ wer | €OS ) a
(29)

eikr[sin&sinQ cos(¢—¢, )+cochos¢‘ ]

The field generated by this equation for a frequency of 1 kHz
and & = 5 degrees is shown in Fig. 14. The field looks similar

_ 4”2 i i"jn (kr) Yn'" (9’ ¢) Yﬂ”’ (g” ¢ ) to that of the 2D case in Fig. (12). However, in the 3D case the
P 2) sound pressure will reduce with 1/r as opposed to 1/sqrt(R) in

the 2D case.
As in the 2D case, the sound field shows some artefacts due
where fﬂ( ) is the spherical Bessel function and to the interference of waves arriving over all azimuthal angles,
' in a similar manner to the 2D case. These artefacts could be
y" (9’ ¢) - ﬂw ph ( cos 9) ™ reduced by applying a window w(®) to the plane wave integral

! 4r (n + |m|)' ! (23) in Eq. (20).
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Figure 14: Quadrature focused source field in 3D
using plane waves arriving from O to 85 degrees in
elevation and O to 360 in azimuth.

Since the Legendre functions are orthogonal,

2
2n+1

0, n#m

[P (c0s0,) P (cos6,)singd6, = e
0

(30)

this window can be written

w(0)=Y P (cos0)
=0 (31)

and the coefficients 5 may be obtained as

2ntl JW(B)P (cos@ )sin0do

0 (32)

B, =

For a rectangular window

1,6 /12—
w(0)={ <z a

0,0 >7/2-a (33)

the coefficients can be calculated using the results above.
a
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Figure 15a: Rectangular window for & = 10

degrees and M = 53. 15b: Window with additional

Gaussian smoothing with 7 = 10.

For a normalized sound pressure of one at the origin, the
coefficients become

U
)

forn>0andand 5 = 1.

(€25

These coefficients can be weighted by a further window to
reduce the effects of truncation and produce a tapering off
of the plane wave amplitudes near ® = 77 / 2 - . Since the
expansion in Eq. (31) is for positive integers n, the window must
be one-sided to leave the low order terms unaltered. We will use
a Gaussian window of the form

-y(nim)’
G(n):ey . ,ne[O,M] (35)
with a window parameter 7 that controls the rolloff. The
window generated for & = 10 degrees and M = 53 is shown in
Fig. 15a and the window produced by the Gaussian smoothing
for 7 = 10 is shown in Fig. 15b.

The resulting sound field is shown in Fig. 16. The wavefronts
show less artefacts than Fig. 14.

CONCLUSION

This article has discussed the occurrence of focused sources
which can arise naturally in reflections from curved surfaces at
high frequencies and in sound re-production with time reversal.
It has also been shown that focused source fields can be directly
generated using a simple model based on plane waves arriving
over a half space. Bessel expansions have been derived for both
the 2D and 3D case and a windowing method presented for
reducing artifacts in the repro-duced field. The imaginary part of
the complex sound field shows wavefronts in the two half-spaces
with a discontinuity along a line separating the half-spaces. The
sound field is similar to the logo of the Acoustical Society of
New Zealand, demonstrating that the logo has a physical basis.

y (m)

X (m)

Figure 16: Quadrature focused source field in 3D
using plane waves arriving from O to 80 degrees

with Gaussian smoothing, 7 = 10.
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